
等差数列教案
作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?以下是小编精心整理的等差数列教案,仅供参考,欢迎大家阅读。
等差数列教案12。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。
2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,
即 或 。
3、等差数列的单调性:等差数列的`公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。
4、等差数列的通项公式: 。
5、判断正误:
①1,2,3,4,5是等差数列; ( )
②1,1,2,3,4,5是等差数列; ( )
③数列6,4,2,0是公差为2的等差数列; ( )
④数列 是公差为 的等差数列; ( )
⑤数列 是等差数列; ( )
⑥若 ,则 成等差数列; ( )
⑦若 ,则数列 成等差数列; ( )
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )
⑨等差数列的公差是该数列中任何相邻两项的差。 ( )
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2) 是不是等差数列 中的项?如果是,是第几项?
(3)已知数列 的公差 则
例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。
等差数列教案2一、教材分析
1、教学目标:
A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;
B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
2、教学重点和难点
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。
二、教法分析
采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是
21,22,23,24,25,
2.某剧场前10排的座位数分别是:
38,40,42,44,46,48,50,52,54,56。
3.某长跑运动员7天里每天的'训练量(单位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特点:
从第2项起,每一项与前一项的差都等于同一个常数。
(二) 新课探究
1、给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③公差可以是正数、负数,也可以是0。
2、推导等差数列的通项公式
若等差数列{an }的首项是 ,公差是d, 则据其定义可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
进而归纳出等差数列的通项公式:
= +(n-1)d
此时指出:
这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
– =d
– =d
– =d
– =d
将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d
当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。
接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
第二问实际上是求正整数解的问题,而关键是求出数列的通项公式
例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 (由学生总结这节课的收获) ……此处隐藏15993个字……生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n—1个等式。
对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)
设置此题的目的:
1。加强同学们对应用题的.综合分析能力,
2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;
3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 (由学生总结这节课的收获)
1。等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2。等差数列的通项公式 an= a1+(n—1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P114 习题3。2第2,6 题
选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
等差数列教案14设计思路
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:
一、片头
(30秒以内)
前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。
30秒以内
二、正文讲解(8分钟左右)
第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒
第二部分内容:给出等差数列的'定义及其数学表达式50 秒
第三部分内容:哪些数列是等差数列?并且求出首项与公差。根据这个练习总结出几个常用的结152秒
三、结尾
(30秒以内)授课完毕,谢谢聆听!30秒以内
自我教学反思
本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。