
〈有理数的减法〉教案
作为一位杰出的教职工,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的〈有理数的减法〉教案,欢迎大家借鉴与参考,希望对大家有所帮助。
〈有理数的减法〉教案1〖教学目的〗
〖知识与技能目标:〗理解有理数减法的意义。
〖过程与方法:〗会进行有理数减法运算
〖情感态度与价值观:〗
有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.
〖教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。
〖教学方法:〗引导发现法
〖教具准备:〗尺、小黑板。
〖教学过程:〗
Ⅰ.复习提问:
1.叙述有理数加法法则。
2.两个有理数的和一定大于每一个加数吗?
3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?
4.3-10有意义吗?它应当等于多少?
注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。
Ⅱ.新课讲解:
1.由问2、问3讲解有理数减法的意义。
在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。
由实际运算的例子归纳有理微减法法则。
考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,
(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。
等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的'相反数。
3.讲解例题:
(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?
解:∵15-5=10,∴15℃比5℃高10℃;
∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;
∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃
比15℃低20℃。
(2)教科书例1、例2。
Ⅲ.做一做
课堂练习:教科书第82页练习第1~3题。
Ⅳ.课时小结
有理数减法的意义。
Ⅴ.课后作业
1.习题2.6A组第1~9题,B组选做。
《2.5有理数的减法》同步练习
2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是.
3.(考点一)计算:(1)-2- (+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
《2.5有理数的减法》测试
16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.
姓名小明小丁小丽小文小天小乐
体重与标准体重的差(kg)-5+3-7+4+60
(1)谁最重?谁最轻?
(2)最重的比最轻的重多少千克?
〈有理数的减法〉教案2这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
备课时如果在教学设计方面与实际生活中的问题联系在一起更能激发学生兴趣,
课堂教学中学生的主体性体现得不好,还需要学生更多的参与到课堂中,主要原因是练习不够,课外作业设计得太单一。教师备课需要与实际生活、教学大纲、学生、教材等联系在一起。
一、选择题
1.下列计算正确的是().
A.(-14)-(+5)= -9 B.0-(-3)=3
C.(-3)-(-3)= -6 D.(+7)-(-2)=5
2.(20xx年凉山州)比1小2的数是().
A.-1 B.-2 C.-3 D.1
3.下列结论中,正确的`是().
A.有理数减法中,被减数不一定比减数大
B.减去一个数,等于加上这个数
C.零减去一个数,仍得这个数
D.两个相反数相减得0
4.一个数加-3.6,和为-0.36,那么这个数是().
A.-2.24 B.-3.96 C.3.24 D.3.96
5.若 ,且 ,则 是().
A.正数 B.正数或负数 C.负数 D.0
6.若两数的和为m,差为n,则m,n之间的关系是().
A.m=n B.m>n C.m
二、填空题
7.减去一个数,等于,也可以表示成a-b=a+.
8.在括号内填上合适的数:
(1)(-17)-(+9)= (-17)+(______);(2)2-(-9)=2+(______);
(3)0-(-9)=0+(______).
9.月球表面中午的温度是101℃,夜晚的温度是-150℃,那么夜晚的温度比中午低_________℃.
10.数轴上表示数-3的点与表示数-7的点的距离为.
三、解答题
11.计算下列各题:
(1)(-12)-(-7);(2)2.7-16.7.
12.已知甲数是4的相反数,乙数比甲数的相反数小7,求乙数比甲数大多少?
13.若规定 a-b=a-b-1,求(-27.2)- ( -2.2)的值.
14.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1℃,乙此时在山脚测得温度是5℃,已知该地区每增加100米,气温大约降低0.6 ……此处隐藏11827个字…….
(2)通过把减法运算转化为加法运算,让学生了解转化思想.
二、过程与方法
经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.
三、情感态度与价值观
体会有理数加法运算律的应用价值.
教学重、难点与关键
1.重点:掌握有理数减法法则,能进行有理数的减法运算.
2.难点:探索有理数减法法则,能正确完成减法到加法的转化.
3.关键:正确完成减法到加法的转化.
四、教学过程
一、复习提问,新课引入
1.计算.
(1)(-2.6)+(-3.1)(2)(-2)+3
2.填空.
(1)__+6=20(2)20+______=17
(3)___+(-2)=5(4)(-20)+___=-6
五、新授
实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4-(-3),?这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索)
可以先从温度计看出4℃比-3℃高7℃.
另外,我们知道减法和加法是互为逆运算.计算4-(-3),?就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以
4-(-3)=7①
另外4+(+3)=7,②
比较①、②两式,你发现了什么?
发现:4-(-3)=4+(+3).
这就是说减法可以转化为加法,如何转化呢?
减-3相当于加3,即加上“-3”的相反数.
比较上面的式子,计算下列各式:
50-20=50+(-20)=
50-10=50+(-10)=
50-0=50+0=
50-(-10)=50+10=
50-(-20)=50+20=
这些数减-3的结果与它们加+3的结果仍然相同.
归纳:通过上述讨论,得出:
有理数的减法可以转化为加法来进行.“相反数”是转化的桥梁.有理数减法法则:
减去一个数,等于加上这个数的.相反数.
用式子表示为:a-b=a+(-b).
注意:减法在运算时有2个要素要发生变化。
1减号变加号
2减数变相反数
例4:计算:
(1)-3-(-5)(2)7.2-(-4.8)
(3)0 – 8(4)(-5)-0
分析:以上是有理数的减法,按减法法则,把减法转化为加法.
11-3(--5)2411113例3:计算:(1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:计算:(1) (-2.5) – 5.9(2)
强调:减号变加号、减数变相反数,必须同时改变,(4)?题中减数的符号为“+”号,省略没有定.
综合运用:课本25页,6题
六、课堂练习
1:计算:
(1) 6-9(2)(+4)-(-7)
(3)(-5)-(-8)(4)0-(-5)
(5)(-2.5)-5.9(6)1.9-(-0.6)
2、列式计算:
(1)比2 ℃低8 ℃的温度
(2)比-3 ℃低6 ℃的温度
3、课本26页7、8、10题略
2.差数一定比被减数小吗?
提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7.
七、课堂小结
引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),?学习有理数减法,关键在于处理好两个“变”字;(1)?改变运算符号──即把减法转化为加法.(2)改变减数的符号──即减数变为它的相反数,?这两个“变”要同时进行,而被减数不变.
八、作业布置
1.课本第25页至第26页,习题1.3第3、4、11、12题.
九、板书设计:
〈有理数的减法〉教案15一、学习目标:
理解掌握有理数的减法法则会将有理数的减法运算转化为加法运算通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
二、学习重点:
运用有理数的减法法则,熟练进行减法运算。
三、学习难点:
减法运算转化为加法运算
1、课前预习导学
(1)、有理数的减法法则:减去一个数,等于加上这个数的 .
(2)、课堂学习研讨2、-3的相反数是 ;在-5, 中,相反数最小的数是 。
2、计算:
(1)-4+1= ;
(2)(+8)+(-3)=
(3)(-3.4)+(-5.6)= 。
3、我市某天的最最高气温是4℃,最低气温是—3℃,请问这一天的温差是多少度?你能根据题意列出算式吗?
4、0比—4多多少?—2比—6多多少?1比—5多多少?—3比2多多少?
(1)列出算式,并借助数轴写出算式的答案;
(2)计算:0+(+4)= —2+(+6)= 1+5= —3+(—2)=
观察(2)的四个算式和(1)的四个算式,你发现了什么规律?把你的发现与你的小组成员交流一下。在小组内再举出几个例子,验证一下你发现的规律是否正确。
如:9—8 = ,9+(—8)= —4—5= ,—4+(—5)=
5、计算下列各题
(1)8-(-5)
(2)(-2)-3
(3)(-6)-0
解:原式= 8+ 解:原式= -2+ 解:原式= + 0= = =
(4) 0-6
(5)(-2)-(-7)
(6)4-(+7)
解:原式= 0 + 解:原式= -2 + 解:原式= 4 += = =
6、课内训练
(1)(-3)-____=1
(2)__-7=-2
(3) -5-__=0
7、下列运算中正确的是( )
A、 B、
C、 D、
8、国际空间站测得站外温度的.变化范围是-157℃~121℃,站外的最大温差是多少?
在运算过程中,要同时改变的两个符号,一个是运算符号由“-”变为“+”,一个是减数性质符号,由“正”变为“负”或由“负”变为“正”。同时,我们要注意,被减数的符号是不发生改变的。
四、课后学习提高
1、已知 , , ,求 的值。
1、若 ,且a>0,b<0,a-b=



